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ABSTRACT

Simulation is the process of designing a computerized model,
of a system or procedure, for the purpose of understanding its
behaviour and developing strategies to control its operation.
Simulation models are rapidly becoming an effective tool for
mineral processing plants. Powerful software and fast hardware
are more readily available than a basic understanding of the
theory of mathematical probability and applied statistics that
process simulation models demand.

Simple spreadsheet software can be used to develop simu-
lation models that take into account any set of conditions at
a mineral processing plant. In addition to an unbiased estimate
Jor each variable in the set on which two-and three-product for-
mulas are based, reliable variance estimates for all variables are
required. How to estimate variances, effectively and at the
lowest possible cost, and how to compute variances for simple
Junctions such as the metal content of a quantity of ore or con-
centrate, or more complex functions such as the percentage
recovery at a mineral processing plant, are the key to useful
simulation models.

Introduction

Simulation models for systems and procedures have become
one of the most powerful and effective applications for com-
puters.9. Simulations are applied to a wide range of scientif-
ic and engineering disciplines. Generally, a model is designed
to investigate the effects of changes in and interactions between
a set of variables before a system is in operation or a proce-
dure is implemented, by simulating weeks, months, and even
years of operation, in a few minutes of computer time.

Along with practical and useful applications always come
abuse and misuse. For a simulation process cannot be more
reliable than the methodology that was applied to design the
model, to estimate variables and variances, to check perfor-
mance, and to verify validity. A mineral processing plant is a
dynamic system that changes continuously as a function of time
but within probabilistic constraints that can be estimated by
applying statistical tools and techniques to the variables and
variances that interact in the system.

A model should be designed to simulate not only the set of
variables but also the variance for each variable. Models in
which constant variances are used to generate normally distribut-
ed random numbers, are less realistic than models in which the
variances are simulated first, and then used to simulate the
variables.

A deterministic model may apply to one subset of variables
while a stochastic model may be more suitable to describe others.
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A system is deterministic if its present state is completely de-
termined by a previous state, and stochastic if its present state
cannot be predicted from a previous state with a high degree
of certainty. Variables that interact in mineral processing plants
often exhibit deterministic and stochastic behaviours so that
correlations between past and present states may display vary-
ing degree of significance. Dependencies between variables
should be identified and taken into account.

Simulation models are based on mathematical probability
and applied statistics(1.3.9. One of the most important postu-
lates in applied statistics is the Central Limit Theorem. In this
application of the theorem it dictates that the degree of preci-
sion with which the behaviour of a dynamic system can be
determined, increases with the number of measurements that
are performed to interrogate it. The cost differential between
a small number of real measurements and a very large set of
simulated measurements essentially accounts for the power and
popularity of simulation models.

Any computer with spreadsheet software is a suitable tool
to simulate the operation of a mineral processing plant. The
advantage of a spreadsheet is that the simulation model can eas-
ily be modified to reflect changes in process parameters, or better
understanding of its operation. The simulation model can only
be meaningful if it takes into account all possible interactions
between a set of variables, and all possible effects of depen-
dencies between subsets of variables. Spreadsheet software is
suprisingly efficient and flexible for all types of simulation
models.

The variance for the variable that contributes most to the
system’s intrinsic uncertainty is the limiting factor for the pre-
cision of a simulation model which implies that simulations can
also be used to identify the most dominant variable in a system
or procedure. How to obtain reliable variance estimates at the
lowest possible cost, how to optimize simulations most effec-
tively, and how to compute variances of functions such as con-
tained metal or recovery in percent are the essence of simulation
models for mineral processing plants.

Variances for Variables

Realistic variance estimates for variables and functions are
essential for effective simulation models of mineral processing
plants. The sampling theory for bulk materials is based on the
additive property of variances®.. Typical applications are vari-
ances for metal grades and contents. For example, the total vari-
ance for the measurement chain that estimates metal grades of
a quantity of ore, concentrate or tailing is the sum of the sam-
pling variance, the preparation variance and the analytical vari-
ance. By contrast, the difference between variances is only an
unbiased estimate for the variance of an intermediate stage in a
measurement chain if their F-ratio is statistically significant.

The Central Limit theorem dictates that the variance for the
mean of a set of elements (primary or secondary increments, sub-
samples or test samples, or replicate assays) is equal to the vari-
ance between single elements divided by the number of elements

VOLUME 84, No. 953



MINERAL PROCESSING

SIMULATION MODELS FOR MINERAL PROCESSING PLANTS

TABLE 3. Variables and variances for copper and
gold contents

TABLE 4. Simulated variances for copper and gold
contents

Parameter

Symbol Cu in mt Auin kg No. var(Cu) var(Au) No. var(Cu) var(Au)

Wet mass in mt  Mw 10 000 25 000 1 2.0269 181243 7 21693 10.1004
Variance in mt2  var(Mw) 25 600 275 625 2 1.8163 10.9280 8 23151 11.7346
Moisture factor  MF 0.968 0.975 3 3517 124773 9 13230 6.2508
Variance varMF) 00256 * 10-4 0011,664*10-4 4 1.3867 7.0809 10 1.1189 1;3032‘1’
Copper factor AF 0.0053 5 3.5203 9.7642 1 3.5414 .
variance Var(AF) 0.0176 * 10_6 6 2-5627 9.7417 12 1.6856 12-35%
Gold grade Average Variance 2.2487 10.7254

in kg/mt a 0.0032 Deterministic Variance 2.3302 10.5970
Variance in
(kg/mtR var(a) 0.013,271 * 10-6
Copper content The first step in the process of simulating the variances for
Va|r?a:1(:e in me2 va?(gu) 313383 copper and gold contents that are listed in Table 2 is to generate

Gold content in kg Au
Variance in kg2  var(au)

78.08
10.5970

0.1462 = 25 077 mt.

Based on a variance of 275 625 mt2, and a rounded z-value
of 2.0, the 95% CI for the wet mass of 25 000 mt is: 2.0 * [275 625
= % 1050 mt for a 95% CR range from: 25 000 — 1050 = 23 950
mt up to: 25 000 + 1050 = 26 050 mt. Randomly generated wet
masses of 24 429 mt and 25 077 mt fall within this 95% CR for
the observed wet mass of 25 000 mt so that each appears to be
an unbiased estimate for the unknown true mass of this quantity
of crushed ore.

Not only the wet mass of 25 000 mt but also its variance of
275 625 mt2 can be generated by simulation. After all, variances
too are stochastic variables that are precise within predictable prob-
ability limits. Any set of normally distributed random numbers
can be used to simulate a variance but a set of twelve will be used
to simulate variances in this example.

The validity of simulation models for variances with the
“@RAND”’ function in spreadsheet software is verified by ap-
plying statistical tests. Bartlett’s chi-squared test is applied to check
a set of variances for homogeneity while Fisher’s F-test is applied
to check a pair of variances for compatibility.

For example, twelve variance estimates that were each based
on twelve normally distributed random numbers resuited in an
average variance of 229 111 mt2 for the wet mass of 25 000 mt.
The F-ratio of: 275 625/229 111 = 1.20 between a calculated var-
iance of 275 625 mt2 and a simulated variance of 229.111 mt? is
below the tabulated values of F0.95;%;132 = 1.24 and
F0.99;20;132 = 1.36. Hence, the simulated variance is compati-
ble with the estimated variance which implies that the “ @RAND”
pseudo-random number generator is unbiased for small sequences.
Infinite degrees of freedom were applied to this variance estimate
of 275 625 mt2 but in practice a variance can only be estimated
with finite degrees of freedom. If this variance were based on a
set of twenty measurements, then the tabulated values would be
F0.95;19;132 = 1.65 and F0.99;19;132 = 2.02.

Homogeneity of Variances for Contained Metal

The wet mass, metal grade and moisture content of a quanti-
ty of ore, and the variances for this set of variables, were used
to compute the variances for copper and gold contents. Table 3
lists all variables and variances that were used to compute the var-
iances for contained metals.

These variables and variances for wet mass, moisture content
and metal grades and the formulas for the variances for contained
copper and gold, were used to simulate deterministic variances of
2.3302 mt2 for a copper content of 51.3 mt, and 10.5970 kg2 for
a gold content of 78.1 kg.

In Table 4 are listed sets of twelve simulated variance estimates
for copper and gold contents.
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variance estimates for wet mass in mt, copper factor, gold grade
in kg/mt, and moisture factor, with the formula:

var[x()] = [E[x(0) + Er; — 6) * Vvar(x)}2 —
[E[x(0) + Er; — 6) * par(x)] 12/12}/11

This formula shows that a set of twelve normally distributed
random numbers is used to simulate a single variance estimate.
The second step is to generate a single normally distributed ran-
dom number for each variable from var [x(r) ], the simulated var-
iance, and x(0), the observed measurement, with the following
formula:

x(r) = x(0) + @Cr; - 6) * \/var[x(r)]

Simulated variables and variances are then used to calculate
the variances for copper and gold contents. This process was
repeated twelve times, and the simulated variances for contained
metals are listed in Table 4.

Fisher’s F-test is applied to verify that the calculated variances
and the averages of simulated variances are compatible. F-ratios
of: 2.3302/2.2487 = 1.04 for copper, and: 10.7254/10.5970 =
1.01 for gold, are so close to unity that calculated and simulated
variances are statistically identical.

The question remains whether the sets of simulated variances
for copper and gold contents in Table 4 are homogeneous, too.
Bartlett’s chi-squared test is applied to each set to check whether
simulated variances are homogeneous, and thus whether the ap-
plied simulation model is valid. The chi-squared test for
homogeneity of variances is based on the following formula:

2 = I ~ D * In(var®] ~ (G ~ 1) * Infvarex)] }

in which
x2 = calculated chi-squared value
In[var(x)] = natural logarithm for jth variance
In[var(X)] = natural logarithm for average variance
k; = number of measurements in jth set

A comparison of calculated chi-squared values with tabulated
values from the chi-squared distribution at 11 degrees of freedom
reveals that the probability of 9.264 for copper falls between 8.148
at 70% and 10.341 at 50%, and that the probability of 5.359 for
gold falls between 4.575 at 95% and 5.578 at 90%. Probability
levels for calculated chi-squared values are neither too low nor
too high so that there is no evidence that the simulation mode!
is invalid.

Possible effects of periodicities in the “@RAND”’ function
can be assessed by increasing the number of normally distributed
random numbers in each set to match the number required for
a particular simulation model. In the case that a set of variances
for large sequences of normally distributed random numbers is
homogeneous, the standard uniform distribution of pseudo-
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and mill feed are expected to vary independently which implies
that these variables are not correlated, and that covariances need
not be taken into account. In the case that the stickiness of crushed
ore is a function of its moisture content, the precision of the belt
scale, and thus the variance of wet mass, could become a func-
tion of moisture content. Under such conditions stickiness would
not only result in a higher variance for the wet mass of crushed
ore that is transferred onto a heap for leaching or into a plant
for processing but could also cause a bias or systematic error.

The precious metal content in kilograms of a quantity of ore
or concentrate is calculated from the wet mass in metric tons, the
precious metal grade in kg/mt, and the moisture content in per-
cent. In formula:

Me = Mw * a *MF

in which:

Me = precious metal content in kg

Mw = wet mass in mt

a = metal grade in kg/mt

MF = moisture factor: (100 - % H,0)/100

For example, a wet mass of 25 000 mt was measured with a
belt scale for which a CV of 2.1% was reported. Its moisture con-
tent of 2.4% and gold grade of 3.2 g/mt were measured with a
precision of 4.5% respectively 3.6% in terms of a coefficient of
variation. Based on these coefficients of variation the variance for
wet mass is: (25,000 * 2.1/1002 = 275,625 mt2, the variance for
moisture content is: (2.4 * 4.5/100@ = 0.011,664%?2, and the var-
iance for gold grade is: (3.2 * 3.6/100) = 0.013,271 (g/mt).

Substituting variables and variances in the mass, grade and
moisture terms of the variance for a gold content of: (25 000 *
3.2/1 000) * (100 — 2.4)/100 = 78.08 kg results in the following

components:

Wet mass : 78.082 * 275,625/25,0002 = 2.6886
Gold grade : 78.082 * 0.013,271 * 10-6/0.00322 = 7.9010
Moisture content : 78.082 * 0.011,664 * 10-4/0.9762 = 0.0075
Gold content = 10.5970

The factor 10-6 in the grade term accounts for the use of a gold
grade in kg/mt rather than g/mt when caiculating the gold content in kg.

In Table 2 are listed various precision estimates that are based on the
gold content of 78.1 kg and its variance of 10.5970 kg2.
These terms show that the measurement of wet mass contributes:
2.6886 * 100/10.5970 = 25% to the variance for contained gold,
that the measurement of metal grade adds: 7.9010 * 100/10.5970
= 75%, and that measurement of moisture content accounts for:
0.0075 * 100/10.5970 = 0.1% only. Hence, the variance for this
gold content of 78.1 kg can be reduced, and its precision improved
most of all, by reducing the total variance for grade.

The total variance for the measurement of gold in its matrix
can be optimized most effectively if the sampling variance and
the variances of preparation and assaying were known. Due to
the single particle or nugget effect the variance of assaying is often
the largest component of the total variance. The analytical vari-
ance can be reduced by screening at 100 - 150 mesh each test sample
that contains coarse gold, by assaying coarse and fine fractions
separately, and by reporting their weighted average as the most
reliable grade estimate. The question whether weighted averages
for test samples are unbiased estimates for gold in its original
matrix is intriguing.

Mechanical sampling systems should preferably be designed
to collect pairs of interpenetrating gross samples. A mechanical
sampling system should be tested for bias before measurements
on final system samples are accepted as unbiased estimates for
metal grades. Even without a mechanical sampling system pairs
of interpenetrating gross samples should be collected from time
to time to obtained a reliable estimate for the total variance of
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TABLE 2. Precision estimates for contained gold

Parameter Symbol Value
Gold in kg Au 78.1
Variance in kg2 var (Au) 10.5970
Standard deviation in kg sd (Au) 3.2553
95% Confidence interval * 95% Cl

in kg + 6.5

in % + 83
95% Confidence range in kg 95% CR

Low Au - 95% ClI 716

High Au + 95% ClI 84.6

“based on : z0.95 * sd (Au)

the metal grade, and to ensure that the manual sampling proce-
dure is optimized. After all, a simulation model requires reliable
variance estimates for the most dominant variables, and realistic
variance estimates for all others.

Normally Distributed Random Numbers

Spreadsheets provide pseudo-random number generators that
are based on a standard uniform distribution within an interval
of: 0 < ri < 1. The term ‘“‘pseudo-random’’ implies that the same
seed will always generate the same sequence of random numbers.
More advanced random number generators are reseeded with an
internal variable from the microprocessor each time the generator
routine is called to ensure that the probability for periodicities to
occur is either eliminated or reduced to a minimum.

The Central Limit Theorem implies that the sum of n identi-
cally distributed independent random variables approximates a nor-
mal distribution with a mean of nu and a variance of no? where
 and o2 are the mean and the variance of the population. If the
variables x,, x,, ..., xn, follow the standard uniform distribution,
then p = 0.5 and 02 = 1/12. Hence the sum of a set of n ran-
dom numbers from the standard uniform distribution approxi-
mates a normal distribution with a mean of 0.5n and a variance
of n/12.

The choice of n in the process of generating normally distribut-
ed random numbers is essentially a matter of computing efficien-
cy. The larger the number of uniformly distributed random
numbers in a set, the more closely the mean approaches the nor-
mal distribution. A set of twelve standard uniform random num-
bers provides a realistic approximation of the normal distribution,
and eliminates the need to transform from nonstandard normal
to standard normal by dividing the variance by the factor 12.

Based on these considerations the following formula is an
efficient choice to generate the variances and variables for the func-
tion that describes their interaction in a mineral processing plant:

j=12
x() = x(0) + Vvar(x) * (Zr; — 6)

in which:
x {r) = simulated variable
x(0) = observed measurement
var (x) = variance estimate for x (o)

1r; = jth standard uniform random number

A simple example will be used to demonstrate how to gener-
ate normally distributed random numbers. The sum of twelve
standard uniform random numbers that were generated in seque-
nce with the ‘“@RAND”’ function in a spreadsheet turned out
to be 4.9123. If a wet mass of 25 000 mt were measured with a
variance of 275 625 mt2, a normally distributed random number
for this wet mass would be: 25 000 + /275 625 * (4.9123 — 6)
= 25000 + 525 * (—1.0877) = 24 429 mt. Another sum of
twelve standard uniform random numbers was 6.1462 which results
in a normally distributed random number of: 25 000 + 525 *
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TABLE 1. Precision estimates for contained copper

Parameter Symbol Value
Copper in mt Cu 51.3
Variance in mt2 var (Cu) 2.3302
Standard deviation in mt sd (Cu) 1.5265
95% Confidence interval * 95% ClI

in mt + 305

in % + 6.0
95% Confidence range in mt 95% CR

Low Cu — 95% ClI 48.3

High Cu + 95% CI 54.4

*based on : z0.95 * sd (Cu)

cause much uncertainty in inventories. A simulation model can
be applied to assess how random variations impact on the preci-
sion of concentrate inventories.

Variances for Functions

A simulation model is based on a set of variables that each
displays a degree of variability for which the variance is the basic
measure. All variables that interact in a mineral processing plant
are continuous but constrained within probabilistic limits. Unbi-
ased, or at least realistic variance estimates for the wet mass,
moisture content and metal grades of mill feed, and for the metal
grades of concentrate and tailings are needed to compute vari-
ances estimates for dry mass, metal content and percent recovery.

The variance for a set of stochastic variables in a function in-
teract in a deterministic model that finds its origin in calculus, and
more particularly in partial derivatives of multivariate functions
(5). The variance for a general function is the sum of the squared
partial derivative for each variable in the set multiplied by its var-
iance so that the following formula applies:

20 = (2 Voo () a0 s .t () an
o,

1 9x;

This formula is applicable to all functions. Sigma symbols im-
ply unknown population variances which, in practical applications,
are replaced with variance estimates from samples. The set of vari-
ables in a function should be statistically independent. Otherwise,
the effect of correlations should be taken into account by condi-
tional simulation. Sets of variables can be tested for statistical de-
pendencies by applying correlation-regression analysis.

For complex systems such as a mineral processing plant with
a heavy medium section, and flotation circuits and thickeners for
different concentrates, the partial derivatives that deterministic
models require are difficult to develop. In fact, complex systems
are the very reason why simulation models have become such a
powerful tool. For the disadvantage of deteriministic models is
that variances become constants. A simple function will be used
to show how to simulate the variances and variables, and how
to check the validity of the simulation model.

The metal content in metric tons of a quantity of ore or mineral
concentrate is calculated from the wet mass in metric tons, and
its metal grade and moisture content in percent with the follow-
ing formula:

Me = Mw * AF * MF

in which:

Me = metal content in mt

Mw = wet mass in mt

AF = metal factor: %a/100

%a = metal grade in percent

MF = moisture factor: (100 - %H,0)/100
%H,0= percent moisture
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Based on the formula for the variance of a multivariate function
the partial derivatives for this function are:
aMe ) aMe)

IMw

aMe >
3MF

=AF'MF< =Mw‘MF( = Mw * AF

Substituting variables and variances in the formula for the vari-
ance of metal content results in the following terms:

var(Me) = (AF * MF)2 var (Mw) +
(Mw * MF)2 var (AF) +
Mw * AF)2 var (MF)

Substituting o2 with var(x) implies that unknown population var-
iances are replaced with variance estimates that are measured in
samples. The formula for var(Me) can be further simplified by
multiplying the term for the wet mass with (Mw/Mw), the term
for the grade factor with (AF/AF)?, and the term for the
moisture factor with (MF/MF)?, and then multiplying the sum
of all terms with (Me/Me)2.

Following is the simplifed formula to calculate the variance
for contained metal or metal content:

var(Me) = Me2[var(Mw)/Mw2 + var(AF)/AF? + var (MF)/MF2]

A numerical example shows how the variance for metal con-
tents or contained metal is calculated. A wet mass of 10 000 mt
was measured with a belt scale for which a coefficient of varia-
tion (CV in %) of 1.6% was reported. In terms of coefficientss
of variation the variances of sampling, preparation and analysis
for a copper grade of 0.53% and a moisture content of 3.2% were
2.5% and 5.0% respectively.

The coefficient of variation is equivalent to the standard devi-
ation as a percentage of the measured variable so that the variance
for a wet mass of 10 000 mt is: (10 000 * 1.6/100)? =25 600 mt2.
Similarly, for a copper grade of 0.53% the total variance, which
is the sum of the variances for sampling, sample preparation and
assaying, is: (0.53 * 2.5/100@ = 0.000, 176%2, and the total var-
iance for a moisture content of 3.2% is: (3.2 * 5.0/100) =
0.0256%2.

Based on these variances the terms of the variance for a copper
content of: 10 000 * (0.53/100) * (100 - 3.2)/100 = 51.304 mt are;

Wet mass : 51.3042 * 25,600/10,0002 = 0.6738
Copper grade : 51.3042 * 0.0001,176 * 10—4/0.00532 = 1.6492
Moisture content : 51.3042 * 0.0256 * 10-4/0.9682 = 0.0072
Copper content = 2.3302

Multiplication with 10-4 accounts for the fact that metal and
moisture factors rather than percentages are used to calculate their
contributions to var(Cu), the variance for contained copper. In
Table 1 are listed precision estimates for copper content.

The factor 20.95 = 1.96, which is valid for a symmetrical 95%
probability of the Gaussian or normal distribution, is usually
rounded to 2.0.

These terms indicate that the measurement of wet mass con-
tributes: 0.6738 * 100/2.3302 = 29% to the variance for contained
copper, that the measurement of grade accounts for: 1.6492 *
100/2.3302 = 71%, and that the measurement of moisture adds
only: 0.0072 * 100/2.3302 = 0.3%. Hence, the precision for con-
tained copper can be improved most of all by reducing the vari-
ance for grade. If the total variance were partitioned into the
sampling variance, were partitioned into the sampling variance,
the preparation variance and the analytical variance, then the pre-
cision for the measurement of copper in crushed ore can be op-
timized most effectively.

The wet mass, metal grade and moisture content of mined ore
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in a set. The theorem also underlies the general sampling formula
which is based on the additive property of variances with identi-
cal dimensions.

The following formula is a simplified version of the general
sampling formula as it applies to a single sampling unit such as
a shift’s production:

var(t) = var(sy/n + var(p) + var(a)/’k

In which:
var(t) = total variance for a sampling unit
var(s) = sampling variance
var(p) = preparation variance
var(a) = analytical variance
n = number of increments/sampling unit
k = number of measurements/test sample

Simulation models for mineral processing plants should take
into account the effect of a serial correlation on the sampling var-
iance('¥. Measurements with an on-stream analyzer in particular
can be used to compute the terms of time series variances for each
mass flow that is interrogated. The term that is closest to the time
interval between mechanically collected increments is a reliable es-
timate of the sampling variance for the grade of this mass flow.

A significant serial correlation exists if the F-ratio between the
variance for randomized on-stream measurements and the first
term of the time series variances for the ordered measurements
exceeds the tabulated value at 95% or 99% probability with the
appropriate degrees of freedom. In the case that the calculated
F-ratio is below the tabulated value the measurements in the set
are randomly distributed, and thus statistically independent. Often,
the sampling variance is significantly lower than the sum of the
variances of sample preparation and assaying so that the serial
correlation impacts only marginally and not significantly on the
total variance. Nevertheless, the preparation and analytical vari-
ances are extrinsic to the variability of a metal grade so that only
the sampling variance is required for simulation models.

Sets of on-stream measurements for mass flows in mineral
processing plants invariably display significant serial correlations.
Time series variances for on-stream measurements are computed
with the following formula:

var(x) = Llxg+n — %02

2n - 1

variance at ith spacing

(j +1) th measurement

jth measurement

spacing between measurements
number of measurements in the set

W w nn

A sampling viariogram is a graph in which a set of time series
variances is plotted against their spacings®4. If a significant serial
correlation exists, then the term of the time series variances that
matches the interval between mechanically collected increments
is the most reliable estimate for the sampling variance. Dividing
it by the number of on-stream measurements in a shift, and ad-
ding the variances of preparation and assaying for a sample from
the slurry that is measured with the on-stream analyzer, gener-
ates a reliable estimate for the total variance of its metal grade.
This variance also plays an important role in calibration proce-
dures for on-stream analyzers.

Generally, the total variance for the moisture content or metal
grade of a sampling unit can be estimated by dividing the sam-
pling variance by the number of primary increments in the set that
constitutes a gross sample, and then adding the variance of prepa-
ration and assaying. The preparation variance can be estimated
from duplicate test samples, and the analytical variance from as-
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says of duplicate tests portions, with the following formula:

var(x) = (m/4)* [L (| Xjj = Xy | )/k]2
in which

var(x) = variance for a single measurement
Xy = first measurement on jth pair

X = second measurement on jth pair

k = number of measurements in the set

A cost effective method to estimate the total variance for the
metal grade of a mass flow is to collect a pair of interpenetrating
gross samples from a set of no less than four sampling units. A
major advantage of this sampling regime is that it takes into
account, almost quantitatively, the effect of a serial correlation
on the sampling variance®4. For the sampling variance of each
interpenetrating gross sample is, in effect, equal to the seond term
of the time series variances rather than the first term.

Ideally, the analytical variance should be the dominant
component in the process of sampling, preparation and assaying.
For coarse materials such as crushed ore the sum of the sampling
and preparation variances often exceeds the analytical variance.
For fine materials such as ball mill discharge, cyclone overflow,
tailing and concentrate the sampling variance need not be more
than a fraction of the analytical variance. Moreover, the variance
for preparing a test sample can easily be reduced to match the
variance for assaying a test portion. Rod mill discharge is difficult
to sample manually, and expensive to sample mechanically, so that
unbiased measurements with acceptable precision characteristics
are hard to obtain.

Concentrates in thickeners contribute a large measure of un-
certainty to production and inventory, and thus large variance com-
ponents to simulation models for mineral processing plants.
Measuring the wet mass of concentrate with a static scale after
dewatering or drying reduces the variance for the wet mass of con-
centrate production to the lowest possible level.

Mineral concentrates can be sampled for moisture content and
metal grades with a high degree of precision. In fact, sampling
and weighing concentrate after dewatering or drying at a mineral
processing plant generates the first point of reference against which
ore reserves can be reconciled, and smelter returns can be com-
pared most effectively.

The variance for the wet mass of mill feed that is measured
with a belt scale can be estimated at low cost. A monitor pro-
gram that retains a running database of differences between a belt
scale’s set point under applied load upon completion of calibra-
tion and the set point observed under applied load prior to the
next calibration is an effective technique to estimate the variance
for wet mass. During a maintenance period a conveyor with the
belt scale could also be operated, with a chain or a static load
applied, for intervals of 30 - 60 minutes. After each interval the
observed mass is recorded, and the test is repeated until no less
than four observations are obtained. Due to its short time base
the variance for this test is lower than the variance for the moni-
tor program.

Calibration data for a static scale provide sufficient informa-
tion to estimate the variances at gross and tare loads, and thus
the variance for the the net wet mass of concentrate in a single
rail car, truck or bulk bag. The sum of the variances for any set
of units becomes the variance for the cumulative wet mass that
was loaded during a production period. This variance can also
be used in simulation models.

Belt scales are perfectly acceptable to measure the wet mass
of crushed ore at a mineral processing plant or a heap-leach oper-
ation but not precise enough to measure the wet mass of concen-
trate during transfer to inventory at a mine. In particular if large
inventories are retained for long periods of time, all random vari-
ations and systematic errors in mass measurements accumulate and
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random numbers that the “@RAND”’ function provides is also
reliable for simulation models that require large sequences.
However, if the periodicities in the “ @RAND?’ function and the
required sequences were to coincide, the random number genera-
tor should not be applied to process simulations.

Summary

Spreadsheet software can be used to develop advanced simu-
lation models for mineral processing plants . The pseudo-random
number generator for the standard uniform distribution that
spreadsheet software routinely provides should be tested to check
its performance and suitability for simulation models. Statistical
techniques are applied to check the validity of the simulation model
by testing pairs of variances for compatibililty, and sets of vari-
ances for homogeneity. Models that simulate all variables and var-
iances that interact in a mineral processing plant are more realistic
and effective than models that simulate variables from constant
variances.

Reliable variance estimates are the key to meaningful simula-
tion models for mineral processing plants. Unless the variances
and variables are generated simultaneously a simulation model for
a mineral processing plant cannot truly reflect its behaviour. Nor
could it generate a reliable variance estimate for the mass of tail-
ings, and, by implication, for the mass of concentrate that is trans-
ferred without weighing to a thickener, or to an inventory without
weighing.

Sets of on-stream measurements can be used to compute terms
of time series variances, and to estimate the sampling variance for
each metal grade. Pairs of interpenetrating samples are effective
to estimate the total variance for moisture and metal grades of
mill feed and concentrate, and for metal grades of different mass
flows in a mineral processing plant.

CIM BULLETIN, SEPTEMBER 1991

The effect of dependencies between variables can be taken into
account by conditional simulation on the basis of correlation-
regression parameters.

Metal grades in mill feed and tailings are frequently depen-
dent so that the simulation model should reflect such a correla-
tion. Arithmetic means of on-stream measurements of concentrate
grades are often biased due to the fact that low mass flows in flo-
tation cells cause higher than average metal grades in concentrate.
A weighted average grade that is based on the sum of products
of metal grades and mass flows for a shift’s production is more
likely to be unbiased.

Simulation can be applied to simple two-product mineral
processing plants and complex plants with heavy medium sections,
and flotation circuits for different concentrates alike. Simulation
models provide a more profound understanding of interactions
between variables and variances in a mineral processing plant than
daily, weekly or monthly metallurgical balances.
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